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Abstract 

Symmetries and dynamical symmetries of higher-order time-dependent constrained (degenerate) 
Lagrangian systems are investigated by methods of the calculus of variations on fibered manifolds. 
The First Theorem of Noether and its modifications are presented and the geometric interpretation 
of the arising conserved functions is clarified in terms of exterior differential systems. Symmetries 
of Lagrangians and Euler-Lagrange form, and dynamical symmetries of Poincare-Cartan form 0, 
and the d& are studied and relations between these symmetries are found. In contrast to regular 
Lagrangian systems, constrained systems are shown to possess two by nature different kinds of 
conserved functions. 
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1. Introduction 

The fundamental Emmy Noether’s paper [22] became a starting point for intensive stud- 
ies of symmetries and first integrals of Lagrangian systems. By methods of differential 
geometry, which turned out to be the most effective tool in this field, a plenty of important 
results have been achieved. Foundations of the geometric theory of invariant variational 
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problems have been laid by Trautman 129,301 who first applied modem geometric methods. 
His methods have been developed within the range of the calculus of variations on fibered 
manifolds by Krupka [ 11,12,14] who studied symmetries of Lagrangians, Euler-Lagrange 
forms and of solutions of the Euler-Lagrange equations, and provided a transparent ge- 
ometric reformulation and generalization of the First Noether Theorem in a very general 
situation (of higher-order field theory). In the last 20 years, many authors have achieved 
important results namely in studies of symmetries and Noetherian symmetries of first and 
higher-order regular Lagrangian systems (see e.g. [23-26,4,5] and references therein); re- 
cently, also symmetries of degenerate first-order Lagrangians (constrained systems) have 
been intensively studied ([3,6,7,21] and others). 

The purpose of this paper is to study symmetries of Lagrangian systems and the arising 
constants of themotion for the case of general (both regular and degenerate) time-dependent 
Lagrangians of any finite order on fibered manifolds (including the zero-order Lagrangian 
systems, i.e. Lagrangians linear in the velocities). Our approach is closely related with the 
above-mentioned work of Trautman and Krupka, and is based on our concept of Lepugean 
2-form [ 161, and a geometric understanding of a regular, resp. constrained system in terms 
of the theory of exterior differential systems [ 16,17,19]. 

After recalling necessary prerequisites from the calculus on fibered manifolds (Section 2), 
we recall briefly the basic concepts of the geometric variational theory; for more details 
we refer e.g. to Saunders [27] and Krupka [ 11,12,14]. In Section 4 we recall the concept 
of a locally variational form [ 1,13,14], of a Lepagean 2-form = Lagrangian system [ 16,191 
(which is a generalization of the concepts of symplectic, presymplectic, cosymplectic and 
precosymplectic form to any Lagrangian of any order), and of Euler-Lagrange equations 
and Hamilton equations of a Lagrangian system [ 11,12,9,15,16]. We also recall the geo- 
metric meaning of these equations as equations for integral sections of certain distribution, 
and a geometric definition of regularity according to [ 16,191. Based on this interpretation 
of the solutions of the Euler-Lagrange and Hamilton equations, we discuss in Section 5 
the concepts of constant of the motion and of a first integral and we show that they gen- 
erally may differ if the Lagrangian system is not regular. This difference has to be taken 
into account namely if one is interested in using constants of the motion for learning the 
dynamics of constrained systems. Section 6 is a recapitulation of known results on sym- 
metries of Lagrangians and Euler-Lagrange forms, and of the Noether theorem according 
to [ 11,121. Section 7 deals with dynamical symmetries (i.e., defined on the phase space) 
of the Poinca&Cartan form 8~ and of Lepagean 2-form (in particular, of d&). It contains 
a generalization of some results known from the regular first-order theory to the general 
case, namely, of theorems relating symmetries and first integrals (modifications of the First 
Noether Theorem), and brings their clear geometric interpretation. In Section 8 relations 
between symmetries of a Lagrangian, Euler-Lagrange form, Poincar&Cartan form and 
Lepagean 2-form are clarified. 

Throughout the paper we work with smooth finite-order manifolds and smooth (unless 
otherwise explicitly stated) mappings. We denote by T the tangent functor, by .I” the s-jet 
prolongation functor, * the pull-back, 8, the Lie derivative along a vector field 6, by ic the 
contraction by a vector field <, and by [., .] the Lie bracket of vector fields. We shall need 
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the theory of distributions of nonconstant rank; at this point we refer e.g. to the appendix 
of the book by Libermann and Marle [20]. 

2. Calculus on fibered manifolds 

A suitable geometric background for the study of time-dependent Lagrangian systems is 
afibered manifold n : Y -+ X where the base X is a one-dimensional manifold and Y is a 
manifold of dimension m + 1, and itsjetprolongalions n, : J’Y + X, r > 1, which enable 
one to consider velocities, accelerations, and other higher derivatives in a mathematically 
correct way. (In particular, one can take X = [w or even 77 : R x M + R; in the latter 
case the prolongation J’(Iw x M) identifies naturally with R! x T’M. Throughout the paper, 
however, we shall work on a general fibered manifold over a one-dimensional base, since 
then many of the considerations and results can be directly transferred to field theory.) We 
denote for r > k 1 0, by nr, k : J’Y + JkY the natural projection (here JOY = Y), which 
for every k, is a fibered manifold over the base JkY. If (t, qO) is a fiber chart on Y, we 
denote by (t,qP), 1 5 (T 5 m,O 5 i 5 r, the associated chart on J’Y. 

Recall that a vector field 6 on J’Y is called Ir,-projectable if there exists a vector field 
.& on X such that TX, . ( = (0‘0; 4 is called rr,-vertical if TX, . 6 = 0. 

For a n-projectable vector field on Y one can define the r-jet proZongation J’c which is 
a vector field on Jr Y; in fibered coordinates, where 

one has 

where the functions .$‘, 1 5 i _( r are defined by the recurrent formula 

&to 
qi dt’ 

(2.1) 

(2.2) 

We shall need the concept of a nr -horizontal l-form p on Jr Y; it is such that ~(6) = 0 
whenever its argument .$ is n, -vertical. Clearly, a one form p on Jr Y is n, -horizontal iff in 
every fiber chart it is expressed in the following form: 

P =f(t,q”, . . ..q.>dt 

(i.e. it does not contain the differentials dqp’s). To every l-form p on Jr Y one can assign a 
unique nr+ 1 -horizontal 1 -form hp on J r+’ Y, called the horizontal part ofp; the mapping 
h is called the or, -horizontulizution and can be defined by the following formulas: 

h dt = dt , hdqU =q;dt, . . . . dq; =q;+,dt, 
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and 

hf = f orr+~.r 

for a (local) function f on J’Y. Recall that a 1 -form p on .I’ Y is called confucr if hp = 0. 
The distribution of l-contact l-forms on J’Y is generated by the following forms: 

~7 = dqp - 9,7+t dt , Oiisr-1. (2.3) 

Note that the forms 

form a local basis of 1 -forms on .I’ Y. For fiber-coordinate expressions of differential forms 
on J’Y we shall often use this basis instead of the standard one dt, d9,?, 1 5 i 5 r. 

Clearly, every l-form p on J’Y admits the unique decomposition into a sum of a hori- 
zontal form hp and contact form pp, namely, 

n,*,,.,~ = hp + PP. 

Similarly, a 2-form p on J’Y admits the unique decomposition into a sum of the so-called 
1 -contact form pt p and 2-contact form p2p, 

.Tlr*t,.# = PIP + P2Pi 

for our purpose it is sufficient to recall that in fibered coordinates the forms p] p and p2p 

are expressed as follows: 

i. k=O 

3. The first variation formula 

Let n : Y -+ X be a fixed fibered manifold. 
Recall [ 11,121 that a Lugrungiun of order r for rr is a horizontal 1 -form on J’ Y. It is 

well known that to every Lagrangian h there can be assigned a unique and globally defined 
one form Ok, called the Lepugean l-form or PoincurP-Curtun form of h; if k is of order r 
then 8~ is generally of order 2r - 1. The form 

EA = ptd@,, (3.1) 

is then called the Euler-Lagrange form of the Lagrangian A; for a Lagrangian of order r 
the Euler-Lagrange form is generally of order 2r. In fibered coordinates, where 

A.=Ldt (3.2) 

we have 
r-l 

& = Ldt +x f;+‘w;. 
i=O 

(3.3) 
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where 

) Oii5r-1, 

and 

(3.4) 

Ek = E,,(L)& A dt , (3.5) 

where the functions E, (L), called the Euler-Lagrange expressions, have the familiar form 

E,(L) = 2(-l? $ $, Ijaim. 
k=O 

(3.6) 

Consider now a piece 52 c X, and write (with an obvious convention) 52 = [a, 61, where 
[a, b] is a closed interval in R, a < b. Denote by Sl,, b](n) the set of sections y of n such 
that the domain of y is a neighborhood of [a, b]. If p is a 1 -form on J’ Y, recall [ 11,121 that 
the function 

h 

P[a,b] : ~la,bl(JT) 3 Y + 
s 

.Vy*p E R 

a 

is called the variationalfunction, or the action function of p over [a, b]. If in particular, h 
is a Lagrangian of order r, we get the action function of the Lagrungiun h 

b 

ha, bl : &z,b](n) 3 Y + 
s 

J’y*A E R. 

a 

(3.7) 

Note that since for a Lagrangian h and its Lepagean l-form & it holds 

jJ’y-*=jl.‘-ly.H*. (3.8) 
a a 

the action functions of 1 and of 6& coincide. 
Now, let us recall the concept of the first variation of the action function [ 11,121. Let 6 

be a n-projectable vector field on Y, 60 its n-projection. Let [q&1() (resp. (&)) be the local 
l-parameter group of 4 (reSp. &I). Let y E s[,, b](n) be a section. There exists an & > 0 
such that for each u E (-8, s) the section yU = &Y@iU1 is defined in a neighborhood of 
4,, ([a, bl). The l-parameter family (vu} of sections of n is called the deformation of the 
section y induced by 4. Now, 

is a differentiable real-valued function of one real variable U; after a straightforward com- 
putation we get 
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h 

$Joo,~,a,bl~(~uY~~l) = 
> J 

Jr y* aJr+, 
u=o a 

The arising action function of aJrgk over [a, b], i.e., 

b 

aJ’$Ia. bl : S[a,b](n) 3 y -+ s J’y* aJ'.+ E b8 

a 

(3.9) 

is called thejrst variation of the action function h[,. b], induced by <. 
The following important assertion can be proved easily. 

Theorem 3.1 (Krupka [ 11 ,121). Let h be a Lagrangian of order r, let 0~ be its Lepagean 
1 -form. 
(1) For every rr-projectable vectorfield c on Y, 

aJrth = h(iJzr-lC d&) + h(di,2,-1C8i). (3.10) 

(2) For even, n-projectable vectorfield { on Y and eveT section y of r, 

J’y* aJrth = J2r-1 y* i,z,-l{ d8A + dJ*‘-’ y* iJzr-lC&. (3.11) 

(3) For every n-projectable vectorjeld c on Y, every closed interval [a, b] E R and eve? 
section y of 7t, 

b b 

s 
J' y* aJrth = 

s 
J2r-’ y* i J&j6 d& 

n a 

+J*‘-‘y* iJ2r-lCOi(b) - J*‘-‘y* iJ2r-lt6h(a). (3.12) 

Proof Since for every 1 -form p on J’ Y, 

aJr[hp = hi$+l#, 

and A = h&, we get (1). Condition (2) is a consequence of (1) and the definition of the 
horizontalization mapping; (3) follows from (2). 0 

Formula (3.10) or (3.11) is called the infinitesimalfirst variationformula, (3.12) is called 
the integraljirst variation formula. 

Notice that in terms of n--vertical vector fields, the infinitesimal first variation formula 
(3.10) takes the form 

aJ+ = iJ2’SEh + h(diJ2,-1C8k), 

where El is the Euler-Lagrange form of h. 
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Let A. be a Lagrangian of order r on IT, consider the action function of ;i over an interval 
[a, 61. A section y E St,, b](n) is called a critica/ section, or an exfremal ofh on [a, b] if 

b 

s 
J’y* aJ+ = o (3.13) 

a 

for every n-vertical vector field .$ in a neighborhood of ~([a, 61) such that the support of 
6 is a subset of r-l ([a, b]). y is called an exfremal of ji if it is an extremal of k over any 
interval [a, b]. 

By the first variation formula one has the following theorem. 

Theorem 3.2 (Krupka [ 11,121). Let A be a Lagrangian of order r, let y be a section off. 

The following conditions are equivalent: 
(1) y is an extremul of h. 
(2) For every n-projectable vector$eld t on Y, 

J2’-‘ y* ilzr-IC d0h = 0. 

(3) For every IT -vertical vector3eld 6 on Y, 

J2’-‘ y* iJzr-IC dOA = 0. 

(4) In every fiber chart y satisfies the system of ODE 

r 

c 
k=O 

Proof Using the integral first variation formula we get immediately that (1) and (3) are 
equivalent. 

Suppose (3). The form rr2* 2r_1 de, is decomposed into the l-contact part (the Euler- 
Lagrange form Eh), and the i-contact part FA. Since the contraction of FA by a vertical 
vector field is a l-contact form, it vanishes along J*’ y. In this way we get 

0 = J2”-’ y* iJzr-Ie d6, = J2’y* i/zr6 ~2~. *,._I de, 

= J2’y* i,zr5 Ei + J2’ y* iJzrC FA = J2’y* iJzrC EA. 

Denoting the components of EA by E, (L), we get that J2’ y *(E, (L)6” dt) = 0 for every 
n-vertical vector field 6 on Y, i.e., that E, (L) o J*’ y = 0, proving (4). 

Suppose (4). Then (by similar arguments as above) for every rr-projectable vector field 

t on Y, 

J2r-’ y* iJzr-~5 d& = J*‘y* i,zrs EA = J2’y*(fu dt - f~dq~)(E, o J2’y) = 0, 

proving (2). 
Condition (3) follows from (2) trivially. 0 

The necessary and sufficient conditions for a section of n be an extremal of a Lagrangian 
h are called the Euler-Lagrange equations of A. 
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4. Time-dependent Lagrangian systems 

Let s 2 1 be an integer. 
By a dynamicalform of orders we mean a l-contact 2-form E on JS Y such that ic E = 0 

for every rrS, u-vertical vector field 4 on JS Y; in fibered coordinates, 

E = E,(t,q”, . . . . q;)& r\dt. (4.1) 

By a solution of a dynamical form E we mean a (local) section y of rr such that E o J” y = 0; 
equivalently, 

E,(t,q”, . . . . q:)oJSy=O, 1 la sm. 

Clearly, the concept of dynamical form on JS Y represents a “globalization” of the concept 
of a system of m ODE of orders to a fibered manifold. In particular, we shall be interested 
in the class of variational equations. Recall [ 1 I] that a dynamical form E on JS Y is said to 
be (globally) variational if there exists an integer r and a Lagrangian h on J’ Y such that (up 
to a projection) E = EL; E is said to be locally variational if there exists an open covering 
of JS Y such that E restricted to any element of this covering is a variational form. Note 
that the latter definition covers the important class of “global Euler-Lagrange equations 
to which there exists no global Lagrangian”. The necessary and sufficient conditions of 
local variationality (generalizing the famous Helmholtz conditions) have been obtained in 
[31,13,1]; for the conditions of global variationahty we refer e.g. to [ 11. 

By definition, a Lepagean 2-form of order s - 1 is a closed 2-form a! on Js-’ Y such that 
its 1 -contact part p1 a is a dynamical form [ 161. We have the following fundamental theorem 
clarifying the correspondence between variational equations and Lepagean 2-forms. 

Theorem 4.1 ([ 161). Let E be a locally variational form of order s, s 2 1. There exists a 
unique Lepagean 2-form o on JS-’ Y such that p1 (Y = E. 

Conversely, if a is a Lepagean 2-form then the form E = plcr is locally variational. 

Proof Let E = E, dqa A dt . One can check by a straightforward (but rather long) calcu- 
lations that u = E + F, 

where 

Fjk = _Fkj 
lsu “0 ’ 

F;; = ; “-‘5-l (_l)‘+’ 

I=0 dt’ a$‘+k+l+l ’ 
05 j+kis-1, 

d’ aE, 

Fjk =O 
0” ’ 

ssj+ks2s-2, 

and that (Y is projectable onto JS-’ Y (for details see 1141). ??
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In accordance with Theorem 4.1, we define a Lagrungian system of order s - 1 be a Lep- 
agean 2-form o on JS-‘Y. (In what follows, we shall suppose that (r is not projectable, i.e., 
that it depends on the q:_, ‘s nontrivially.) The manifold Y will be called the con$gurution 
space and the manifold JS-* Y the phase space [ 191. Note that within this terminology, a 
Lagrangian system of order s - 1 can be equivalently represented also by a locally varia- 
tional form E of orders, or by the class of all equivalent (i.e., differing by a total derivative) 
local Lagrangians of different orders. It is known that every Lagrangian system possesses 
(local) Lagrangians of the minimal possible order c, where c = is in the case that s is even, 
and c = i(s - 1) ifs is odd [31,16]. 

Remark 4.2. Every Lepugeun 2-form a! can be locally expressed in the so-called canonical 

form 
s-c-l 

a=-dHr\dt+ c dp:Adq,? 
i=o 

where H, pa, . . . , pi-“-’ are certain (local) functions on the phase space, called a 
Hamiltonian and momenta of the Lagrangian system Q, respectively [ 141; if hbi, = Len dt 
is a minimal-order Lagrangian then we can take 

s-c-l 

p; = %i”>;+* 7 H = -Ltii, + c p&r+, , 

i=O 

where the (f&)~+“s are given by (3.4). 

Let (Y be a Lagrangian system of orders - 1, s 2 1. A (local) section y of the configuration 
space is called an extremul of (Y if for every rr-vertical vector field 6 on Y 

Js-‘y*iJ,-15cx = 0; (4.2) 

a section 6 of the phase space is called a Hamilton extremal of CY if for every n,?_ 1 -vertical 
vector field on Js-’ Y 

6*icfz = 0. (4.3) 

Eq. (4.2) (resp. (4.3)) is called the Euler-Lagrange equation (resp. the Hamilton equation) 
of the Lagrangian system cz. 

We can see that Hamilton equation (4.3) is an equation for integral sections of a dis- 
tribution on the phase space spanned by the (smooth) Pfafhan forms icar where 4 runs 
over all rrS_r -vertical vector fields on JS-’ Y; this distribution is called the Euler-Lagrange 
distribution [l&16]. The Euler-Lagrange distribution has an important subdistribution, the 
characteristic distribution of the closed 2-form o, spanned by the Pfaffian forms ipa! where 
e runs over the set of all vector fields on the phase space. We denote by A and V the 
Euler-Lagrange distribution and the characteristic distribution, respectively. 
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While the structure of Hamilton extremals is geometrically clear, the structure of ex- 
tremals is not so transparent; however, one can see the following theorem. 

Theorem 4.3 ([ 16,171). IRr a! be a Lagrungian system of order s - 1, s 2 1. 
(1) If y is an extremal of a then JS-’ y is an integral section of the characteristic distri- 

bution D of w. 
(2) The set of extremals is in one-to-one correspondence with those Hamilton extremals 

which are of the form of prolongation (i.e., S = JS-’ y). 

Proof 
(1) Let JS-’ y*i,,-lCcr = 0 for every Jr-vertical vector field c on Y. Computing this 

condition, we get E o JS y = 0, where E = plcr. Now, for every vector-field 6 on 
J’Y we have 0 = JS y*it E = JS y*icz: ,_,a. This means that for every vector field 

6 on JS-’ Y, JS-’ y*ica! = 0, proving that JS-’ y is an integral section of ID. 
(2) If y is an extremal then, by (l), JS-’ y is an integral section of V, and hence of A. 

Conversely, if JS-’ y is a Hamilton extremal, then trivially, JS-’ y*iJr-lCcr = 0 for 
every n-vertical vector field on Y. 0 

It should be noted that in the particular case of s = 1 (first-order variational equa- 
tions = zero-order Lagrangian systems, i.e., Lagrungians linear in the velocities) Hamilton 
extremals coincide with extremals; in other words, the Euler-Lagrange distribution (the 
characteristic distribution) describes the structure of extremals. 

The above geometric interpretation of the dynamics of Lagrangian systems leads to the 
following geometric definition of regularity, and of a “constrained system” [ 16,191. Namely, 
a Lagrangian system is called regular [ 161 if its characteristic distribution has a constant rank 
equal to one (this means that locally it can be spanned by one vector field). Since, moreover 
in this case extremals are in one-to-one correspondence with Hamilton extremals, regular 
Lagrangian systems possess the property that through every point in the phase space there 
passes exactly one maximal prolonged extremal (i.e., the motion is uniquely determined by 
the initial conditions). 

Note that the. above concept of regularity covers not only Lagrangians regular in the 
standard sense (the Hessian # 0), but also a wide class of Lagrangians which are usually 
considered as singular. Further note that our concept of regularity relates not to a particular 
Lagrangian, but to the whole class of equivalent Lagrungians (recently, regularity in this 
sense has been considered also in [8]). 

A Lagrangian system is called constrained if it is not regular (i.e., if its Euler-Lagrange 
distribution is not of maximal rank on the phase space). A constrained Lagrangian system 
is called semiregular [ 17,191 if the rank of the Euler-Lagrange distribution A is (locally) 
constant, and A = V. More generally, we get a geometric classijcation of Lagrangian 
systems according to the properties of their characteristic and Euler-Lagrange distribution, 
i.e., according to their dynamical behavior [ 191. The advantage of the geometric approach is 
a transparent and nonconfusing understanding of “constrained systems”, of their dynamics, 
first integrals, etc. (cf. [17,19]). 
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5. Constants of the motion and first integrals of constrained systems 

First, recall the notion of a first integral of a distribution. Let A be a distribution on a 
manifold M, locally spanned by a system of (continuous) Pfafhan forms. A function f, 
defined on an open subset of M, is called ajrst integral of A if the l-form df belongs to A 
(clearly, this means that df can be locally expressed in terms of Pfaffian forms spanning A). 
If the rank of A is a constant then, equivalently, f is a first integral of A if it df f + f = 0 
for every vector field [ belonging to A. Obviously, the geometric meaning of first integrals 
is the following: f is a first integral of A iff for every integral mapping q of A, 

v*df=d(fop)=O; 

in other words, f is a constant along the integral mappings of A. First integrals of a 
distribution can be used to find integral manifolds. If, in particular, the distribution has 
constant rank and is completely integrable, then any system of independent first integrals 
fl 9 . . . 9 fk 9 where k = corank A, represents a complete (local) solution in an implicit 
form (more precisely, by the Frobenius theorem every system of such first integrals defines 
a chart adapted to A, i.e. the equations ft = ct (const.), . . . , fk = Ck (const.) are implicit 
equations for the integral mappings of A). 

We have seen that the dynamics of a Lagrangian system is completely described by the 
Euler-Lagrange distribution A. Consequently, if f is afirst integral of the Euler-Lagrange 
distribution then f is constant along Hamilton extremals, and in particular, f is constant 
along extremals. Similarly, if f is a first integral of the characteristic distribution, it is 
constant along extremals. Notice that since in general neither the set of Hamilton extremals 
nor the set of integral sections of V is in one-to-one correspondence with extremals, there can 
exist functions on the phase space which remain conserved along the (prolonged) extremals 
but are not first integrals of the characteristic distribution (i.e., f o S = const. whenever 
6 = Js-’ y but not necessarily for other Hamilton extremals). To distinguish between these 
two kinds of conserved functions we shall use the following terminology: A (local) function 
f on the phase space will be called a constant of the motion of an (s - 1)th order Lagrangian 
system (Y if for every extremal y 

f o Js-‘y = const., (5.1) 

and ajirst integral of ar if f is a first integral of the characteristic distribution. 
Summarizing the results, we can see that for regular Lagrangian systems (i.e., such 

that the corresponding characteristic distribution is of rank one), and for all zero-order 
Lagrangian systems (i.e., Lagrangians linear in velocities) the concepts offirst integral and 
constant of the motion coincide. For constrained systems of order ) 1 they generally d@er; 
every first integral is a constant of the motion but there can be constants of the motion which 
are not$rst integrals of the characteristic distribution. 

Remark 5.1. The dynamics of a regular Lagrangian system is (locally) represented by one 
vectorjeld on the phase space, hence, constants of the motion/first integrals can be directly 
used to find the extremals (e.g. by applying the Liouville theorem). 
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On the other hand, the dynamical picture of constrained systems is much more compli- 
cated. If the Lagrangian system is semiregular then its Hamilton extremals are described by 
a system of involutive vector fields [ 171, and first integrals can be used to find the maximal 
integral manifolds of the system (e.g. by applying a generalized Liouville theorem [ 17,181). 
Unfortunately, (prolonged) extremals of constrained systems cannor be described by means 
of a system of involutive vector$elds on the phase space [ 191. In this case, however, one can 
apply the so-called constrained algorithm [ 191 to describe the dynamics of any concrete 
constrained system. As a result, one gets a system of vector fields defined along certain 
submanifolds (M,) of the phase space. Now, one can use first integrals or constants of the 
motion to “strengthen” the vector fields on M, (for every index 0. It should be stressed, 
however, that often the vector fields along M, are noninvolutive; so the use of constants of 
the motion for practical integration of constrained systems is limited. (For details on the 
constrained algorithm and for examples of its application we refer to [ 191.) 

6. The First Theorem of Emmy Noether 

We start recalling the fundamental concepts of invariant transformation and symmetry 
of a differential form on a fibered manifold. 

Consider a fibered manifold rr : Y + X. Let q be a p-form p > 1, on JS Y, s 2 0. A 
diffeomorphism $J of JS Y is called an invariant transformation of n if 

4*rl= 17. (6.1) 

Now, let 6 be a vector field on JS Y, denote by [& ) its local l-parameter group of transforma- 
tions of JS Y. c is called a symmetry of tl if for every u, the & is an invariant transformation 
of n. Differentiating the equations &*n = n with respect to the parameter K at u = 0, we 
get an equivalent condition for 4 be a symmetry of q, namely, a vector field 6 on JS Y is a 
symmetry of a p-form 9 on JS Y iff 

atq=o. (6.2) 

On fibered manifolds, one can consider different kinds of invariant transformations and 
symmetries. Recall that a diffeomorphism v of the total space Y is called an isomorphism 
of the fibered manifold n if there exists a diffeomorphism bpg of the base X such that 
(PO o rr = x o cp. In this case, for every s > 0 there arises a diffeomorphism JSv of JS Y, the 
s-jetprolongation ofq. Hence, the group of invariant transformations of q has a subgroup of 
those invariant transformations which are of the form ofprolongation. Similarly, a symmetry 
c of r] can be of the form of prolongation of a projectable vector field < on Y. From the point 
of view of applications, the most interesting symmetries are those “living” either on Y, or 
on the phase space. In what follows, under a symmetry we shall mean a symmetry defined 
on Y, while a symmetry defined on the phase space we shall call dynamical symmetry. 
Note that if we have a differential form defined on the phase space JS-’ Y and a (local) 
rr-projectable vector field 6 on Y is its symmetry, then J’-‘{ is its dynamical symmetry; 
however, clearly not every dynamical symmetry has to correspond to a symmetry. 
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Let us turn to study symmetries of Lagrangians and Euler-Lagrange forms. 
Let C#J be an automorphism of the fibered manifold rr . Let h be a (local) Lagrangian of order 

t-, EA its Euler-Lagrange form. C#J is called an invariant transformation of the Lagrangian h 
[29] if 

J’cfh = A. (6.3) 

4 is called ageneralized invariant transformation of the Lagrangian A [29] if it is an invariant 
transformation of the Euler-Lagrange form of A, i.e., 

J2’q5*Ek = EA. (6.4) 

We have the following fundamental lemma, relating the transformed Euler-Lagrange 
form of a Lagrangian with the Euler-Lagrange form of the transformed Lagrangian. 

Theorem 6.1 (Krupka [12]). Let cj be an automorphism of lr, h a Lagrangian on J’Y. 
Then the forms J=“I$* EA and EJ~~*A are defined on the same open subset of J2’Y, and 

J2’@El, = EJr4*i . (6.5) 

ProojI Denote 0~ the Lepagean equivalent (PoincanSCartan form) of the Lagrangian A.. 
Then J*‘-‘~#I*@~ is the Lepagean equivalent of the Lagrangian J’@*A [12,13]. Now, for the 
Euler-Lagrange form of this Lagrangian we get 

E.P~A = EJ2r4’hBl = E,,J2r-~+*eA 

= PI d(J 2r-l#*&) = pl(J2’-’ * $J dt?i> = J2’@(pl dOA) = J=‘c#J*E~ 

(for details see [ 121 or [ 131). 0 

The classes of invariant and generalized invariant transformations of a Lagrangian are 
related in the following way. 

Theorem 6.2 (Krupka [ 121). Every invariant transformation of a Lugrangian h. is a gen- 
eralized invariant transfonnation of h. 

Prooj Proposition 6.2 immediately follows from Lemma 6.1. 0 

We can see, that a n-projectable vector field 4 on Y is a symmetry of the Lagrangian )\. 
if and only if 

aJ'eh = 0, (6.6) 

and 4 is a symmetry of the Euler-Lagrange form Ei if and only if 

aJ2’6 Ei = 0. (6.7) 

IQ. (6.6) (resp. (6.7)) is called Noether equation (resp. Noether-Bessel-Hugen equation). 
Let us write these equations in fibered coordinates. Denote h = L dt, EA = E, dqU r\dt, and 
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by (to,{,“) the components of the prolongation of 4 (recall that to = co(t), c” = [“(t, qU), 
and the cl, k > 0 are given by (2.2)). Then we get 

for the Noether equation, and 

(6.8) 

(6.9) 

for the Noether-Bessel-Hagen equation. 
Note that to get a correct definition of symmetry of a Lagrangian, one must consider 

Lagrangian as a differentialform h, not us afunction 15. Working with Lagrangian functions 
(which, unfortunately, is very frequent in the existing literature) is ambiguous and can lead 
to confusion. In particular, for the definition of infinitesimal symmetry of a Lagrangian 
function Eq. (6.8) is used, making this concept geometrically mysterious (the Noether 
equation (6.8) surely does not mean that the function L is conserved along J’c, but that 
8 Jr6 L + L dtu/dt = 0, where 60 is the time-component of the vector field 6). 

Similarly, a correct and meaningful definition of symmetry of the Euler-Lagrange equa- 
tions must be formulated for the corresponding Euler-Lagrange differential 2-form. 

Remark 6.3. Noether equation and Noether-Bessel-Hagen equation can be used for im- 
portant investigations in theoretical physics (in mechanics and in field theory). Namely, 
Noether equation can be viewed: 
(1) as an equation for computing symmetries of a given Lagrangian; hence, in this case it 

is a PDE for vector fields 6 which leave the Lagrangian invariant; 
(2) as a (system of) PDE for Lagrungiuns possessing prescribed symmetry (symmetries). 

Similarly, Eq. (6.9) can be viewed not only as an equation for symmetries of a given 
locally variational form but also as an equation for dynamical forms possessing prescribed 
symmetries. In the latter case one can modify the problem as follows: find all dynamical 
forms which are locally variational and possess prescribed symmetries; then, of course, one 
has to solve (6.9) together with the (generalized) Helmholtz conditions with respect to the 
ED’s; this point of view has been first applied in [26]. 

We have the following theorem on generalized invariant transformations. 

Theorem 6.4 (Krupka [12]). Let (f be a n-projectuble vectorjield on Y, let h be a (local) 
Lagrungian of order r, Eh its Euler-Lagrange form. 6 is a symmetry of EA ifund only if 
one of the following equivalent conditions hold: 

(1) Ea,,+ = 0, 
(2) there exists a unique closed l-form p of order r - 1 such that 
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Proof Formula (6.5), applied to the local l-parameter group of transformations of a pro- 
jectable vector field 6 on Y, means that 

aJ2rCEh = Ea,,,A . (6.10) 

Now, the first part of Theorem 6.4 trivially follows from (6.10). The equivalence of (1) 
and (2) becomes clear if one knows the kernel of the Euler-Lagrange mapping E (i.e., 
the mapping assigning to every Lagrangian its Euler-Lagrange form): it is known that a 
Lagrangian h of order r belongs to ker ,C if and only if A = hp, where p is a closed 1 -form 
of order r - 1 (for details see [ 11,121 or [ 141, where ker I in the most general situation, i.e., 
higher-order field theory, is described). 0 

Corollary 6.5. Every n -projectable vectorjeld 6 which is a symmetry of a Lagrangian A., 
is a symmetry of the Euler-Lagrange form EA of A. 

Now, we can easily get the fundamental First Theorem of Emmy Noether as a direct 
consequence of the first variation formula (3.12) and the Noether equation (6.8). 

Theorem 6.6 (Noether Theorem [22,11]). Let A be (local) a Zagrangian of order r (defined 
on an open subset W c J’ Y), let 0~ be its Lepagean equivalent. Let a n-projectable vector 
field 6 on Y be a symmetry of the Lagrangian A. Let y be an extremal of A de$ned on 
rr, (W) c X. Then 

J2’-‘y*di,zr-~@ = 0. (6.11) 

Proof By the integral first variation formula (3.12), over any interval [a, b], 

b b b s J'y*aJyh = s J2’-‘y*iJzr-lo doi + 
J 

dJ2’-‘Y*iJ2,-,et$. 
a a 0 

Since y is an extremal, by Theorem 3.2 the first term on the right-hand side of the above 
equation vanishes. By the invariance condition (6.6), the left-hand side equals zero, and we 

get 
b s J*‘-‘y* diJzr-ltOk = 0 

a 

over any interval [a, b]. Hence, (6.11) follows. 0 

Knowing a symmetry of I, Noether Theorem provides us with the following function 
which conserves along J*+' y: 

r-l 
(6.12) 

where the fi’s (resp. the tI?‘s> are given by (3.4) (resp. (2.2)). 
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Note that for a Lagrangian of order r the function (6.12) is of order 2r - 1. This means 
that, in general, from a Lagrangian of order greater than the minimal one, the Noether 
Theorem provides us with a function f(~, c) which lives higher than on the phase space, i.e., 
is not a constant of the motion. However, we have the following corollary. 

Corollary 6.7. Let A. be a minimal-order Lagrangian (of a Lagrangian system of order 
s - 1, s 2 1). If a T-projectable vectorjeld 4 on Y is a symmetry of h then i,,r-lCOi is a 
constant of the motion. 

More generally, taking into account that for equivalent Lagrangians A., Jt’ , where ji’ = 
A + h df one has Ok! = 19, + df, we get the following corollary. 

Corollary 6.8. Let A’ be a Lagrangian of order r for a Lagrangian system of order s - 1, 
s 2 1, let A = A’ - h df be an equivalent Lugrangian such that 8k is of order s - 1. If a 
n-projectable vectorJield e on Y is a symmetry of I’, and i!IJrc f = const., then i,,T-1t6A is 
a constant of the motion. 

Remark 6.9. Since 

6 b 

s J’y*aJ’$ = 
s 

J2r-1 y*aJ2r-1pA , 

a a 

Noether Theorem remains true if instead of a symmetry of the Lagrangian h one takes 
a symmetry of its Lepagean equivalent 0~; Let A be a minimal-order Lagrangian ( of a 
Lagrangian system of order s - 1, s > 1). If a n-projectable vector field 4 on Y is a 
symmetry of f3A then i,,-lCOk is a constant of the motion. 

It remains to find the meaning of symmetries of a locally variational form E. Taking into 
account Theorem 3.2 and the first variation formula (similarly as in the proof of the Noether 
Theorem) we obtain a generalization of the Noether Theorem. 

Theorem 6.10 ([ 111). Let E be a locally variational form of order s, let a n-projectable 
vector@eld c on Y be a symmetry of E. If A is a (local) Lagrangian of order r for E on an 
open set W, and p is the unique closed l-form of order r - 1 such that aJrck = hp. and if 
y is an extremal of E defined on xr (W) c X, then 

J2’-‘Y*(diJ2r-le0i - p) = 0. (6.13) 

Hence, a symmetry of E gives rise to a system of constants of the motion 

i,,-k,& - f, 

where ), is a minimal-order Lugrangian for E and f is a (local) solution of the equation 
p = df. 
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7. Dynamical symmetries 

In this section we shall study the problem how to find first integrals of the characteristic 
distribution 2, of a Lagrangian system. We shall show that first integrals are connected with 
dynamical symmetries of Lepagean 2-forms (roughly speaking, with dynamical symmetries 
of 0~ and d&); recall that we use the terminology “dynamical symmetries” for symmetries 
“living” in the phase space. 

In the previous section we have obtained that every symmetry 4 on Y of the Lepagean 
equivalent 0~ of a minimal-order Lagrangian h gives rise to a constunr offhe motion i,,-I (0~ 
(Remark 6.9). It is easy to see, however, that a stronger assertion holds. 

Theorem 7.1. Let s 2 1, let cx be a Lagrangian system of order s - 1. Let c be a vector 
field on the phase space Js-’ Y. 
(1) If c is a (dynamical) symmetry of u then the 1 -fomz ie’;Y is closed; i.e., locally ito = d f, 

where f is a first integral of the characteristic distribution V. 
(2) If 6 is a (local) l-form of order s - 1 such that a! = d0, and if6 is a (dynamical) 

symmetry of 9, then 4 is a (dynamical) symmetry of CY and igB is a first integral 
OfD. 

Remark 7.2. If the vector field a/at (the time translation) is a symmetry of a Lagrangian, 
i.e., if aL/& = 0, then the Hamiltonian H is a constant of the motion. However, notice 
that the condition aL/at = 0 implies that the vector field a/& is also a symmetry of de,, 
which means that H is ajrst integral. In other words, for any (both regular and constrained) 
time-independent (= autonomous) Lagrangian system the Hamiltonian is conserved along 
all Hamilton extremals. 

Similarly, if a space translation a/aqu is a symmetry of a (generally nonautonomous) 
Lagrangian, then the corresponding momentum pV is a constant of the motion. Moreover, 
from aL/aqu = 0 we get ialaqU de, = dp,, which means that the momentum pV is a first 
integral. Hence, if a Lagrangian system (regular or constrained) possesses a Lagrangian not 
depending on q” then the corresponding momentum is constant along the integral manifolds 
of the characteristic distribution. 

In correspondence with [ 10,251, (dynamical) symmetries of a Lepagean 2-form will be 
called Noetherian symmetries. 

Note that trivially, every vector field belonging to the characteristic distribution D is a 
Noetherian symmetry; however, symmetries of this kind are not very interesting, since they 
provide trivial first integrals. 

Evidently, to a symmetry of (Y the corresponding first integral is unique up to a constant 
function. Conversely, given a first integral, the corresponding symmetry is not unique: More 
precisely, if 6 is a Noetherian symmetry such that it (Y = d f, then for any vector field 5‘ 
belonging to V, $ = c + [ is another Noetherian symmetry satisfying iia = d f. lfll, .5 
are two symmetries such that ic,cr = df = iczo then 6) - .5 belongs to V. 

Let us note the following interesting property of Noetherian symmetries. 
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Theorem 7.3 ([18]). Let 6 be a Noetherian symmetry of 1~. Let 0 be defined on an open 
subset U of the phase space and such that de = 01 on U, and 8 $ V. Then in a neighborhood 
of every point x E U there is a Noetherian symmetry c such that i$ = 0. If k 1 0 is an 
arbitrary butfived integer and {I, . . . , {k belong to the characteristic distribution V, defined 
in a neighborhood of x and such that i,,e # 0, 1 I j 5 k, then 

(7.1) 

is a required symmetry. 

Note that for every nontrivial Lagrangian system (E # 0) possessing at least one semis- 
pray belonging to V, the requirement 6’ $ 2) of the above proposition is trivially satisfied 
for all Lepagean equivalents of minimal-order Lagrangians. 

The following is a generalization of the classical Poisson theorem to higher-order non- 
regular Lagrangian systems. 

Proposition 7.4. The set of all Noetherian symmetries is a Lie algebra. If f 1, f2 are first 
integrals of V, and 61, (2 are some corresponding Noetherian symmetries, then 

g = ]fl,fzl = it,@ = ic,dfz 

is a first integral of V, corresponding to the Noetherian symmetry [el, 521. 

(7.2) 

The first integral { fl , f2) is called the Poisson bracket of the first integrals fl , f2. 
Since for every C1 -vector field 5‘ belonging to V and every Noetherian symmetry 6, 

i[c. <la = dicica! = 0, we have the following corollary. 

Corollary 7.5. If c is a Noetherian symmetry and { is C’ -vector$eld belonging to V then 
the Lie bracket [t, {] belongs to V. 

Note that in the case of regular Lagrangian systems, V is (locally) spanned by one vector 
field [ (called Hamiltonian vector$eld, or higher-order difSerentia1 equation vector3eld); 
then the above corollary takes the following form. 

Let a! be a regular Lagrangian system of order s - 1, s 2 1, let < be its Hamiltonian 
vectorjeld and ( its Noetherian symmetry. Then 

tc.51 = gt (7.3) 

for a function g. 

Remark 7.6. Authors studying symmetries of (in the standard sense) regular first-order 
Lagrangian systems often consider symmetries 6 satisfying tbe condition (7.3) (the so- 
called generalized dynamical symmetries of 5‘). Clearly, Noetherian symmetries belong to 
this class of symmetries, but not every symmetry (7.3) is a Noetherian symmetry. 
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It is obvious how the concept of generalized dynamical symmetry is generalized to higher- 
order regular Lagrangian systems (including odd-order Euler-Lagrange equations). Notice, 
however, that it can be, in a meaningful way, further generalized only to those constrained 
systems whose dynamics is described by the characteristic distribution of a (locally) constant 
rank; among them, the most important are semiregular systems: If rank 2) = k then D is 
locally spanned by a system of p = corank V vector fields 51, . . . , cp (of class at least 
Cl). Hence, we can say that a vector field c on the phase space is a generalized dynamical 
symmetry of the characteristic distribution V, if for all i = 1, . . . , p, 

for some functions g/, 1 5 i, j 5 p. 
For general constrained systems, one has either to consider symmetries of the Euler- 

Lagrange, resp. of the characteristic distribution instead of generalized dynamical symme- 
tries or to compute the dynamical picture using the constrained algorithm and then to restrict 
the concept of generalized dynamical symmetry to a submanifold of the phase space along 
which the dynamics is described by a system of (at least Cl)-vector fields (cf. [ 191). 

8. Relations between various types of symmetries 

Let us turn to a deeper study of relations between various types of symmetries. 
Given a Lagrangian system, we have already seen that every symmetry of a Lagrangian 

h is a symmetry of its Euler-Lagrange form EA (the converse being generally not true), 
and that every (dynamical) symmetry of a Lepagean equivalent 0~ of a Lagrangian is a 
(dynamical) symmetry of the Lepagean Z&form ff& associated with EA. Conversely, if 6 is 
a Noetherian symmetry of a Lagrangian system (Y and 8 is a (local) 1 -form such that a! = d6? 
then 6 is not necessarily a dynamical symmetry of 8; we only get that a60 is closed. 

Further the following proposition holds. 

Proposition 8.1. Let (I! be a Lugrungiun system on JS-’ Y, let e be a (local) rr-projectable 
vectorfield on Y. 
(1) Let 6’ be a (local) 1 -form such that (Y = de. If.$ is a symmetry of 8 then it is u symmetry 

of h = he. 
(2) If 6 is a Noetheriun symmetry then it is a symmetry of the locally vuriutionul form 

E = p1cx. 

Proof The first assertion follows from the first variation formula (3.10), which for any 
Lepagean l-form 8 of order r and its corresponding Lagrangian he reads 

a, r+lghO = h(a,~,~) . 

We shall prove the second assertion. Let 0 be a l-form (defined on an open subset of 
JS-‘Y where J’-‘t is defined), and such that a! = de. By assumption, the form i,,-lC de 
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is closed. Hence the l-form p = a,,-1cO = i,,-~~ de + di,.T-lcO is closed, and for the 
Lagrangian A = h0 we get 

aJ+ = h(aJ.Y-lc8) = hp. 

By Theorem 6.4,6 is a (local) symmetry of E&j = E. 0 

Summarizing the results, we have obtained the following relations between symmetries 
of a Lagrangian A., its PoincarC-Cartan form 6,, the Euler-Lagrange form Ei, and its 
associated Lepagean 2-form (YES : 

6 is a symmetry of 8~ + c is a symmetry of h 

I i 
6 is a symmetry of (YEA + c is a symmetry of EA 

Remark 8.2. Note that some authors use a different terminology when considering sym- 
metries of Lagrangian (or symplectic, resp. presymplectic) systems. For example, in [4,5] 
a vector field on J2’-‘Y which is a symmetry of the Poincare-Car-tan form 0~ is called 
a Cartan symmetry, and a vector field c on the configuration space Y such that J2’-‘( 
is a Cartan symmetry is called Noether symmetry. From our considerations it is clear that 
Noether symmetries, if prolonged to the phase space, represent a kind of Noetherian symme- 
tries in our sense, hence, they give rise to first integrals. On the other hand, Cartan symmetries 
give rise to first integrals of the characteristic distribution only if 8,: is projectable onto the 
phase space. 
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